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We study the displacement of miscible fluids between two parallel plates, for different
values of the Péclet number Pe and of the viscosity ratio M. The full Navier–Stokes
problem is addressed. As an alternative to the conventional finite difference methods,
we use the BGK lattice gas method, which is well suited to miscible fluids and allows
us to incorporate molecular diffusion at the microscopic scale of the lattice. This
numerical experiment leads to a symmetric concentration profile about the middle
of the gap between the plates; its shape is determined as a function of the Péclet
number and the viscosity ratio. At Pe of the order of 1, mixing involves diffusion and
advection in the flow direction. At large Pe, the fluids do not mix and an interface
between them can be defined. Moreover, above M ∼ 10, the interface becomes a
well-defined finger, the reduced width of which tends to λ∞ = 0.56 at large values of
M. Assuming that miscible fluids at high Pe are similar to immiscible fluids at high
capillary numbers, we find the analytical shape of that finger, using an extrapolation of
the Reinelt–Saffman calculations for a Stokes immiscible flow. Surprisingly, the result
is that our finger can be deduced from the famous Saffman–Taylor one, obtained in
a potential flow, by a stretching in the flow direction by a factor of 2.12.

1. Introduction
When a fluid 1 displaces a more viscous fluid 2 (M = η2/η1 > 1), the inter-

face between them is unstable (Saffman & Taylor 1958), leading to the so-called
viscous fingering pattern, i.e. the penetration of a finger of the less-viscous fluid
into the more-viscous one. This includes the well-known Saffman–Taylor finger in
a Hele-Shaw cell, involving immiscible fluids, with no surface tension in Saffman &
Taylor’s pioneering work, as well as viscous fingering in porous media for miscible
fluids without molecular diffusion (Bensimon et al. 1986; Hickernell & Yortsos 1986;
Pelcé 1988; Yortsos & Hickernell 1989).

In the analysis of these two problems, an abrupt interface between the two flu-
ids is assumed. Yet, dealing with miscible fluids is more subtle in a way: due to
their mutual spreading, the finite interface width becomes a parameter of the insta-
bility, leading to new predictions, some of which have been verified in experiments
(Manickam & Homsy 1995; Loggia et al. 1995). Curiously enough, the miscible prob-
lem has been mainly studied, both theoretically and experimentally (Wooding 1969;
Homsy 1987; Bacri, Salin & Woumeni 1991; Bacri et al. 1992; Loggia et al. 1995),
in the particular case of Darcy’s flow in a porous medium, that is for a potential
flow. Linear stability analysis and intensive computer simulations are based on a
macroscopic convection–diffusion equation for the volume-averaged concentration,
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in which the hydrodynamic dispersion coefficient is assumed to be the one obtained
from the dispersion of a passive tracer. Such an assumption is only exact in the
case of Taylor (1953) and Aris (1956) passive dispersion: the mixing of the tracer
is affected by the convective Haagen–Poiseuille velocity field, but remains a diffusive
process. Note that the resolution of the tracer problem concerns also the case of two
miscible fluids with the same viscosity and density. When the two fluids have different
viscosities, their mixing leads to a viscosity distribution which modifies the velocity
field. The flow field and concentration are then coupled, and the concept of the
dispersion process should be questionable. Although the coupling has been analysed
in heterogeneous porous media (Yortsos 1995), the understanding of the physical
process of mixing in geometries as simple as a capillary tube or the space between
two parallel plates (that is the gap of a Hele-Shaw cell), is still needed. Experiments
in a capillary tube, involving miscible fluids of different viscosities, have been under-
taken by Paterson (1985) and more recently by Petitjeans & Maxworthy (1996), as
well as the corresponding simulations by Chen & Meiburg (1996). The viscous flow
in the gap of a Hele-Shaw cell has been investigated by Yang & Yortsos (1997), in
the asymptotic limit of an infinitely narrow gap and in the absence of diffusion. The
immiscible displacement counterpart has been analysed by Reinelt & Saffman (1985),
when capillary and viscous forces are comparable.

In the present paper, we tackle the issue of a miscible displacement in the gap of
a Hele-Shaw cell, using a two-dimensional BGK lattice gas method. Such a method
has been proved useful to simulate the complete Navier–Stokes equation (Qian,
d’Humières & Lallemand 1992; Behrend, Harris & Warren 1994). The BGK approxi-
mation also provides a suitable way to incorporate molecular diffusion (Flekkøy 1993).
Dealing with miscible fluids is then straightforward: the two fluids mix at the lattice
scale. Moreover, viscosities, molecular diffusion, as well as mixing rules are directly
introduced as independent tunable parameters. This allows us to cover a wide range
of dynamic viscosity ratios and Péclet numbers (ratio of the characteristic diffusion
time to the characteristic advection time).

After a brief review of the main lattice gases principles, with a particular focus
on the miscible BGK model we shall use here, the results for the classical Taylor
dispersion are presented, as a validity test of our scheme. Then we analyse a wide
range of viscosity ratios M and Péclet numbers. At large Péclet numbers, molecular
diffusion becomes negligible, and the mixing zone (i.e. the region between the pure
fluids) remains narrow. In this limit, which should coincide with the limit of zero
surface tension for immiscible fluids, our data exhibit a well-defined interface between
the fluids. We study the shape of this interface versus M, and find that in the limit
of large M, a steady-state-shaped finger is obtained. Finally we derive its analytical
shape (Rakotomalala, Salin & Watzky 1996a).

2. Lattice gases
Basically, in the kinetic gas theory, simple collisions, preserving mass and momen-

tum, are able to generate gas transport properties such as viscosity, mass and thermal
diffusions. Statistical physics (Landau & Lifschitz 1958; Reif 1965), taking multiple
collisions and interactions into account, leads to a more elaborated description of the
fluid state. The essence of lattice gas modelling is to perform this statistical physics
on a lattice with enough degrees of symmetry and freedom: a microscopic descrip-
tion of the (quasi-)particles movements and collisions will develop the macroscopic
behaviour of the fluid. Thus, unlike classical discretization methods (finite elements,
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finite volumes, etc.), lattice gases are not solvers but generators of the Navier–Stokes
equation. Since the pioneering work of Frisch, Hasslacher & Pomeau (1986) ten
years ago, who demonstrated the ability of lattice gases to recover the complete
Navier–Stokes equation, an extended literature has been written, applying this type of
modelization to multiple systems with various complexity (Chen, Ohashi & Akiyama
1994; Ladd 1994a,b; Appert & d’Humières 1995). A thorough introduction and an
exhaustive bibliography on lattice gases applications can be found in Benzi, Succi
& Vergassola (1992) and Rothman & Zaleski (1994). Among the different lattice
gas-related techniques that can be used to address a hydrodynamic problem, we have
chosen the lattice BGK model, well suited to miscible fluids, since it allows us to
easily incorporate molecular diffusion. We have superimposed a fluid mixing rule on
the scheme, in order to account for the viscosity changes as mixing proceeds.

2.1. The Lattice BGK model

Following the statistical physics idea of Bhatnagar, Gross & Krook (1954), Qian (1990)
and Qian et al. (1992) developed the lattice BGK model from the classical lattice-
Boltzmann scheme of McNamara & Zanetti (1988) and Higuera & Jimenez (1989).
The method uses square lattices in two dimensions. The space is represented by a
regular grid (the node r and the direction vectors ei connecting r to neighbours).
According to Qian, the time evolution of the mass density Ni(r, t) in the direction i at
time t+ 1 is

Ni(r + ei, t+ 1) = Ni(r, t) + λνN
neq
i (r, t) where λν ∈]− 2, 0[. (2.1)

λν is the viscosity relaxation parameter and N
neq
i the non-equilibrium part of the

density probability distribution, given by

N
neq
i = Ni −Neq

i . (2.2)

To obtain the Navier–Stokes equation, the following equilibrium distribution is used
for the local density Neq

i (r, t):

N
eq
i (r, t) = tiρ

{
1 +

eiαuα

c2
s

+
uαuβ

2c2
s

(
eiαeiβ

c2
s

− δαβ
)}

, (2.3)

where cs is the sound velocity, the greek subscripts indicate the Cartesian coordinates,
with implicit summation on the repeated ones, and ti are weighting parameters for
each direction of the lattice, chosen so that the local mass and density be conserved
without causing violation of the Galilean invariance. The physical variables are
defined as

ρ =
∑
i

Ni, (2.4)

ρu =
∑
i

eiNi, (2.5)

for respectively the mass and momentum densities per site.
Using a Chapman–Enskog multiscale technique, equation (2.1) gives the Newtonian

incompressible Navier–Stokes equation:

∂u

∂t
+ (u · ∇ )u = −1

ρ
∇P + ν ∆u, (2.6)

where the kinematic viscosity ν is linked to the relaxation parameter λν through the
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relation:

ν = −1

3

(
1

λν
+

1

2

)
. (2.7)

2.2. BGK lattice gas model for miscible fluids

Dealing with miscible fluids (Flekkøy 1993) requires introducing molecular diffusion
in a way which leads to a convection–diffusion equation for the concentration C(r, t)
of one of the fluids. Let the fluids have the same viscosity (tracer case). The time
evolution of the concentration in the direction i at time t+ 1 is given by

Ci(r + ei, t+ 1) = Ci(r, t) + λDC
neq
i (r, t) where λD ∈]− 2, 0[, (2.8)

with a simpler (scalar) equilibrium local concentration Cneq
i = Ci − Ceq

i :

C
eq
i (r, t) = tiC

{
1 +

eiαuα

c2
s

}
, (2.9)

involving the local concentration C =
∑

i Ci. The molecular diffusion coefficient Dm
is linked to λD through

Dm = −c2
s

(
1

λD
+

1

2

)
. (2.10)

Using the multiscale technique, the convection–diffusion equation is recovered:

∂C

∂t
+ u · ∇C = Dm∆C . (2.11)

The extension of the BGK method to a scalar quantity has been successfully tested
(Flekkøy et al. 1995). It describes the dispersion of a passive tracer in a flow field
(Taylor 1953).

When the tracer is active, i.e. in our case, when the two fluids do not have the
same viscosity, the concentration-dependent properties of the mixture change as
mixing occurs. We need therefore to implement a mixing rule for the viscosity (we
do not address in this paper gravitational effects). This is carried out using a local
viscosity which depends on concentration, η[C(r, t)]. Then, according to the local
concentration value C(r, t), the dynamic viscosity has a local value η(r, t), leading to a
local kinematic viscosity ν(r, t) = η(r, t)/ρ, and to a local relaxation parameter λν(r, t).
With such a procedure, the Navier–Stokes equation and the convection–diffusion
equation are coupled through the concentration-dependent viscosity: the velocity
field and concentration depend on each other. Note that this scheme can be applied
as well to non-Newtonian fluids, the effective kinematic viscosity to be put into the
relaxation equation (2.1) becoming a function of the shear rate (Rakotomalala, Salin
& Watzky 1996b).

2.3. Simulations

The simulations are performed on the so-called D2Q9 lattice (for two dimensions
and nine lattice directions). The nine directions are the four medians and the four
diagonals plus the centre of the square (figure 1), and the ti have the following values:

t0 = 4
9
; t1 = t3 = t5 = t7 = 1

9
; t2 = t4 = t6 = t8 = 1

36
. (2.12)
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Figure 1. The D2Q9 lattice and the lattices links ei.

The sound velocity is cs = 1/
√

3. We use an exponential mixing rule close to
experiments, and also used in other simulations (Homsy 1987):

η(C) = η(0) exp(−C logM) where M =
η2

η1

, η(0) = η2, η(1) = η1. (2.13)

Accessible kinematic viscosities and diffusion coefficients range between 10−4 and 1.
Larger values for the viscosity (i.e. λν > −0.29) lead to a strong shear near the wall
boundaries and the no-slip condition (through a simple bounceback routine) cannot
be ensured, unless a larger lattice is used. When this is the case, more sophisticated
boundary conditions have to be introduced (Inamuro, Yoshino & Ogino 1995). On
the other hand, a value smaller than 10−4 can lead to a prohibitive equilibrium time
and to numerical instability. For those reasons, the kinematic viscosity has been
varied between 5 × 10−4 and 0.5, and the molecular diffusion coefficient between
10−4 and 0.1. The lattice size is y × x = H × L = Ny × Nx = 32 × 256. One of the
simulations presented in this work has been performed on a narrower and much
longer lattice (H = 16, L = 2048), in order to ensure a good description of the
macroscopic flow. The robustness of our results has been tested successfully with
longer and wider lattices (from 16 × 2048 to 64 × 512), while keeping the same
characteristic dimensionless numbers (Reynolds and Péclet numbers defined below).
Our choice of the value H = 32 throughout this work is a compromise between the
computational time efficiency and having a sufficient amount of points in order to
smooth the profiles diagrams. Our algorithms are implemented on parallel machines
(CM5 and Cray-T3D). Parallelism is definitely suitable for lattice modelling, owing
to the independence of each node: collision and propagation steps can be achieved
simultaneously at all nodes. For a 32× 256 lattice, and 20 000 time steps, the typical
computing time is respectively 15 and 3 CPU minutes for a 32 nodes-partition of a
CM5 computer and of a Cray-T3D.

In the simulations, the fluids are initially at rest with a flat interface at the reduced
position x/L = 0.1. The flow is then switched on, like in laboratory experiments;
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the average fluid velocity along the direction x is kept constant and equal to U0.
The characteristic dimensionless numbers of our problem are the viscosity ratio
M = η2/η1, η2 and η1 being the viscosities of the displaced fluid and of the injected
one, respectively, the Reynolds number Re = U0H/ν and the Péclet number, defined
by Pe = U0H

2/l Dm, where l is the extent of the injected fluid in the flow direction,
at a given time τC (l = U0 τC). The Péclet number defined in this way is the ratio
of the typical transverse diffusion time τDm ∼ H2/Dm to the typical advection one
τC ∼ l/U0 over the distance l. When Pe is much greater than 1, molecular diffusion
is negligible: the injected fluid has not enough time to diffuse transversely, whereas
it has been advected in the meantime by a distance l in the flow direction. One of
our aims in the following sections will be to study the flow pattern obtained at large
Péclet numbers: in order to do this, one may choose a large average velocity (yet
it has to be much smaller than the sound velocity) and a small diffusion coefficient
(not smaller than roughly 10−4). The Péclet number obtained in this way may be
large at the beginning of the simulation, but it will decrease as time evolves (since
Pe ∝ 1/τC), giving an increasing emphasis on diffusion. Another important number
is the characteristic viscous diffusion time over the cross-section, τν ∼ H2/4ν, related
to entrance effects. In order to avoid these effects, the following inequality has to be
verified: τν < τC , which implies that Pe be smaller than Pe* = 4ν/Dm. The viscosity
ratio M has been varied between 0.01 and 1000. The Reynolds number is of the
order of 1 for M ranging between 0.1 and 10; for the extreme cases (M = 0.01 and
M = 1000), it is of the order of 1 or 100, according to whether the viscosity used in its
evaluation is that of the displaced fluid or the injected one. The Péclet number ranges
between 0.5 and 512. The Reynolds and Péclet numbers are varied independently
with the transport coefficients, ν and Dm respectively, the average velocity U0 and the
lattice width H remaining constant, and equal to 0.005 and 32 respectively, unless
specified. Note that real variables (denoted by R) are related to lattice variables as
follows: let l0 be the lattice spacing (i.e. l0 = L/Nx), and t0 the time step, uR = u l0/t0,
νR = ν l20 / t0,. . . For each simulation, we shall present a data set of the normalized
longitudinal velocity field ux(r, t)/U0, the iso-concentrations C = 0.25, 0.5, 0.75 and
the transverse-averaged concentration profile at different time steps:

C̄(x, t) =
1

H

∫ H

0

C(x, y, t) dy. (2.14)

3. Results and discussion
3.1. Case M = 1: the effect of molecular diffusion

The so-called Taylor–Aris hydrodynamic dispersion model (Taylor 1953; Aris 1956)
describing the mixing in a tube or between two parallel plates represents a convenient
way to validate a flow simulation (Baudet et al. 1989). Basically, the mixing of two
miscible fluids is the result of the interplay between molecular diffusion and the
advection by the flow. For fluids of equal viscosities, the velocity field u(r) is a
Haagen–Poiseuille one. When Pe is sufficiently small (Pe ∼ O(1)), molecular diffusion
acts in the transverse direction: the overall effect of both advection and transverse
diffusion is a convection–diffusion process, in which the mixing zone is advected with
the average flow velocity U0, and spreads with an effective diffusion coefficient

Deff =
U2

0H
2

210Dm
, (3.1)
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in the case of a flow between parallel plates (Turner 1959). The hydrodynamic
dispersion process is described by a ‘macroscopic’ convection–diffusion equation,
analogous to equation (2.11), in which u(r) is replaced by its mean U 0, Dm by Deff
and the concentration field C(r, t) by its transverse-averaged value C̄(x, t). At high
Pe, diffusion has not enough time to mix the fluids, and the front region between the
two fluids stretches linearly in time, due to the parabolic velocity field.

We show in figure 2 the results of simulations obtained after 20 000 time steps,
over a wide range of Pe (from 0.5 to 512), in the case where the two fluids have
the same viscosity (M = 1). The value of Pe is controlled by the value of Dm. The
average concentration C̄(x, t) over a given cross-section accounts for the proportion
of each fluid at that location. At small Pe (figure 2a, Pe= 0.5), we observe efficient
mixing, resulting in an overall average concentration profile with a shape close to an
error function, and a shape of the iso-concentration contours barely sensitive to the
parabolic velocity profile. The average concentration profile can be analysed, using the
solution of the convection–diffusion equation, with Deff to be determined from a fit
to the data. This has been achieved in figure 3, which shows the result of a simulation
performed on the narrower lattice (H = 16), for Pe = 0.8. The figure displays a set of
the average concentration, the iso-concentration contours, the velocity profiles along
the sample, together with the theoretical and simulated transversely averaged concen-
trations. The agreement with the theory is very good, giving confidence in our lattice
BGK approach. Note that the simulation on a lattice with 16 nodes in one direction
gives satisfactory results concerning the concentration, as well as the velocity field.

Figure 2 also displays the evolution of the mixing process, as Pe increases. The iso-
concentration contours become sharper and closer to one another. For a sufficiently
high Pe (figure 2e,f, Pe = 262 and 512), we can consider that the fluids do not mix:
indeed, not only is the shape of the iso-concentration contours reminiscent of the
parabolic flow field, but the contours are very close to one another. We estimate the
distance between the iso-concentration contours C = 0.25 and C = 0.75 in the case
of the largest Pe (Pe = 512), to be of the order of three lattice units. In the following
sections, we shall refer to the region separating the fluids as an interface (at high Pe).
The region where the two fluids are present (0 < C̄ < 1 on the top plots) will be
called the coexistence region.

It should be noticed that the high-Pe regime pertains to the case where molecular
diffusion has not had enough time to homogenize the concentration in the transverse
direction. In other words, this regime could be viewed as a ‘transient’ one, only
insofar as one would need to wait a rather long time to see the effect of molecular
diffusion. More precisely, if the simulation of figure 2(f) (Pe = 512) were extended
over the same time interval (i.e. up to t = 40 000), the pattern obtained would be the
one corresponding to Pe = 256, that is roughly figure 2(e). This high-Pe regime is
nonetheless of great interest, since it gives us the opportunity to study an interface in
the absence of molecular diffusion.

3.2. Case M 6= 1: the effect of the viscosity ratio

When the viscosity ratio is different from 1, the velocity field is altered by the mixing
process, inducing in turn changes in the concentration profiles. Here we shall compare
the results obtained for M = 100 and M = 0.01 with the case M = 1. The Reynolds
numbers for M = 100 and M = 0.01 are equal to 0.32 or 32, according to whether
the viscosity used is that of the injected fluid or of the displaced one.

Let us focus on the case M = 100, corresponding to the displacement of a
fluid of viscosity η2 by a fluid of viscosity η1 a hundred times smaller than η2.
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Figure 2. Mixing versus Péclet number for iso-viscosity fluids: M = 1. The value of Pe is controlled
by the value of Dm. (From (a) to (f) Pe = 0.5; 5; 26; 51; 262; 512). On each data set, obtained at
time t = 20 000, the top plot shows the transverse-averaged concentration C̄ , the middle plot shows
the iso-concentration contours C = 0.25, 0.5, 0.75, the bottom plot shows the longitudinal velocity
profiles (solid lines) and the theoretical parabolic Haagen–Poiseuille profile, for the same flow rate
(dots).
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Figure 3. Taylor dispersion: M = 1; Pe = 0.8. Simulation performed on a lattice of size H = 16,
L = 2048. (a) Transverse-averaged concentration versus the reduced distance in the flow direction.
Open circles are from our numerical simulation; the solid line is the best theoretical complementary
error function fit. The theoretical Taylor–Aris dispersion value Deff is 0.14 and the fit gives
Deff = 0.13. (b) Same plots as in figure 2.

The results are displayed in figure 4, in a form similar to figure 2 (in particular,
the Pe are the same). First we can notice that for Pe smaller than 1 (figure 4a),
molecular diffusion is most dominant, resulting in the same average concentration,
iso-concentration contours, and velocity profiles in the mixing region as in the case
M = 1. When Pe is slightly increased (figure 4b, Pe = 5), a small deviation from
a parabolic velocity profile appears, in the region between the pure fluids. As Pe
is increased further, the deviation from the parabolic profile becomes more pro-
nounced, and the iso-concentration contours get closer to one another. The extent
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Figure 4. M = 100; 0.5 6 Pe 6 512. Same plots as in figure 2.

of the region between the pure fluids is stretched in the flow direction, compared
to the case M = 1. The last four data sets, figure 4(c–f), show the evolution toward
a well-defined finger, obtained for Pe > 262 (figure 4e), and the stretching in the
same way of the coexistence region, in the direction x. From now on we shall use
the term finger when a plateau can be distinguished on the average concentration
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Figure 5. M = 0.01; 0.5 6 Pe 6 512. Same plots as in figure 2.

plot. In addition, the average concentration profile is almost Pe-independent for
values of Pe larger than 262, justifying the choice of the largest Pe in our sim-
ulations, while keeping Pe smaller than Pe* = 4ν/Dm in order to avoid entrance
effects.

The flow field is affected by the viscosity variations in the coexistence region: the
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Figure 6. Pe = 512. (a)–(g) M = 0.01; 0.1; 1; 10; 100; 1000. Iso-concentration contours C = 0.25,
0.5, 0.75 obtained at time t = 20 000.

x-component of the velocity is larger inside the less-viscous fluid (in the middle of the
gap), and reduced inside the more-viscous fluid (in the vicinity of the walls), owing to
the imposed constant flow rate. Both effects are enhanced as Pe is increased, resulting
in a nearly flat velocity profile in the more-viscous fluid, far from the tip of the finger
(figure 4f). Outside this region, Haagen–Poiseuille flow develops in the viscous fluid.

For a viscosity contrast smaller than 1 (see figure 5, M = 0.01), those tendencies are
mainly reversed: compared to the case M = 1, the extent of the region between the
pure fluids is smaller and the iso-concentration lines are almost equidistant. At large
Pe, the velocity profile in the coexistence region is flatter inside the more viscous fluid
(the flow approaches a plug flow). We note that for M = 0.01, entrance effects may
possibly alter the concentration profile at high Pe (figure 5e, f, Pe = 262 and 512):
indeed Pe* is of the order of 200 (resp. 20 000) when evaluated with the viscosity of
the displaced (resp. injected) fluid. The shoulder present above C̄ ∼ 0.6 at Pe = 512
(figure 5f) will vanish at larger times, and the profile will turn into a smooth profile
(figure 5c, d). A last remark concerning the case M = 0.01 is that it constitutes a
limiting case insofar as it is difficult to obtain a very large Pe (corresponding to short
times), while ensuring that no entrance effect is present.
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Figure 6 shows the iso-concentrations, C = 0.25, 0.5, 0.75, for values of M ranging
over five decades in the high-Pe regime (Pe = 512). As mentioned above, for this
value of Pe, the fluids have not had enough time to mix. Therefore, we shall analyse
below the profile in terms of a well-defined interface between the two fluids, located
on the iso-concentration contour C = 0.5.

3.3. Time evolution of the interface at high Péclet numbers

As mentioned in the introduction, large Pe provide a physical system where we can
address the issue of pure viscous effects. We deal asymptotically with two miscible
fluids without diffusion (infinite Pe), which is equivalent to immiscible fluids with no
interfacial tension (infinite capillary number Ca = U0 η/γ, where γ is the interfacial
tension). The shape of the frontier between the two fluids is the key issue of the
problem, as it controls the dynamics of the macroscopic flow. Note that the interface
can be determined either from the average concentration profile, or from the iso-
concentration contour C = 0.5: in figures 2, 4 and 5 the top plot of each data set is
equivalent to the upper half (y > 0.5) of the middle plot.

From the data sets of figure 7, obtained at Pe = 512, we can extract the main
features to be analysed in more detail. Figure 7(a) shows the time evolution of the
average concentration and of the iso-concentration contour C = 0.5, for M = 100.
The front is mainly a finger travelling at a constant velocity Utip, whereas the rear
remains steady at the inlet. Therefore the mass conservation at constant flow rate
gives a simple relation between the velocity of the finger tip and the finger width W :

U0

Utip

=
W

H
= λ. (3.2)

The average concentration from the plateau to the tip of the finger obeys the steady
behaviour C̄(x, t) = C̄(x−Utipt).

At values of M of about 1, the feature is quite different: the interface seems to
spread linearly in time (see figure 7b, M = 1). The average concentration is therefore
expected to scale with a convective law C̄(x, t) = C̄(x/t). However, it should be
pointed out that large variations in the Péclet number (or equivalently very different
times) may lead to a change in the flow regime; for this reason, we have plotted
in figure 8 the interface obtained at time steps equal to t = 14 000; 17 000 and
20 000 (for which Pe ranges between 731 and 512), versus the reduced variable
x/t, for values of M equal to 0.2, 1, 5 and 10. The case M = 1 (figure 8b) shows
that the curves are satisfactorily superimposed on one another, as expected. This is
still the case if Pe � 1. Each average concentration C̄ travels with its own velocity
uC̄ =

(
∂x/∂t

)
C̄

, measured either on the time series of the average concentration

C̄(x, t) (figure 7b), or on the time series of the iso-concentration contour y(x, t), in
the region y > 0.5 (figure 7b). When M is slightly increased (figure 8c, M = 5), a
small deviation from the C̄(x/t) behaviour can be seen, in the region surrounding
the front of the interface. Yet this deviation diminishes when time increases (time
steps t = 17 000 and 20 000 on the plot). The same feature is observed for values
of M up to M ∼ 10 (figure 8d). The above comments may be made for values of
M slightly smaller than 1 (figure 8a, M = 0.2), down to M ∼ 0.1; the difference
with M > 1 lies in the fact that the deviation from the C̄(x/t) behaviour is visible
mostly at the tip of the interface. When M is much smaller than 1 (see figure 7c,
M = 0.01), the average concentration does not seem to scale as C̄(x, t) = C̄(x/t);
indeed the shape of the profile evolves in time. This may be due to the fact that
the coexistence region is smaller than for the case M ∼ 1, whereas the flow rate is
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Figure 7. Transverse-averaged concentration and iso-concentration contour C = 0.5 at times t
ranging between 10 000 and 20 000. (a) M = 100; Pe = 512. (b) M = 1; Pe = 512. (c) M = 0.01;
Pe = 512.

the same: molecular diffusion will act on a narrower region and will therefore be
more rapidly efficient. The only way to overcome this problem would be to increase
the Péclet number, hence use a smaller molecular diffusion coefficient. Unfortunately
the technique we use would reach its limitations (Dm must not be smaller than
10−4).

The C̄(x/t) behaviour is reminiscent of the main recent results of Yang & Yort-
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Figure 8. Plot of the iso-concentration contour C = 0.5 versus x∗/t∗ (x∗ is the distance travelled,
t∗ = t/1,000). Each data set displays the times t = 14 000; 17 000; 20 000 superimposed. (a)–(d)
M = 0.2; 1; 5; 10.

sos (1997), who performed the asymptotic analysis of the problem, in the limits of an
infinite Péclet number and an infinite aspect ratio L/H , and under the condition of
a Stokes flow. The flow reduces therefore to a parallel flow between two plates, and
the average concentration C̄(x, t) is governed by the continuity equation:

∂C̄

∂t
+

dfM(C̄)

dx
= 0, (3.3)

where fM(C̄) is the flux of the injected fluid. The solution of this hyperbolic equation
leads to the velocity of the average concentration C̄:(

∂x

∂t

)
C̄

=
dfM(C̄)

dC̄
. (3.4)

The above equation predicts nothing less than the C̄(x/t) behaviour. Yang & Yortsos
give an analytical solution to equation (3.4). In order to compare our data with
their results, we plot in figure 9 C̄ as a function of

(
∂x/∂t

)
C̄
/U0, for values of M

ranging between 0.2 and 10, and also for M = 100. The plot is also a description of
the evolution of the interface shape with M: as M increases, the interface stretches
continuously until the finger appears. While figure 9 shows similar trends, our curves
do not fit exactly on top of Yang & Yortsos’s curves; the reason for this discrepancy
may be that these authors work at infinite Péclet number and infinite aspect ratio
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Figure 9. Transverse-averaged concentration C̄ versus (1/U0)(∂x/∂t)C̄ for M = 0.2; 1 (dashed);
3; 5; 10; 100 and Pe = 512.
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Figure 10. Reduced tip velocity Utip/U0 versus the viscosity ratio M (solid circles) for Pe = 512.
The corresponding value of the fraction m of the film left behind is shown on the vertical axis on
the right side of the figure. The open circles correspond to the data of Chen & Meiburg (1996).

L/H; unfortunately we have showed that we could not have in the same simulation
both Pe � 1 and L/H −→ ∞.

3.4. Characterization of the interface at large viscosity ratios and high Péclet numbers

Figure 10 plots the reduced velocity of the finger tip Utip/U0 versus M. It increases
slowly from 1.4 to 1.5 as M increases from low values to 1. Utip increases slowly
when M varies from 1 to 10. Above M ∼ 10, it rises much faster and levels off at a
value equal to 1.79 at large M. The latter value gives a reduced width of the finger,
λ = U0/Utip = 0.56. The vertical axis on the right-hand side of the figure corresponds
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Figure 11. Fit of the rear of the finger obtained at M = 100 and Pe = 512, using the calculations
of Reinelt & Saffman.

to the fraction m of the film left behind, given by

m = 1− λ = 1− U0

Utip

. (3.5)

The value of m can be compared with the results obtained by Chen & Meiburg (1996)
with another numerical technique. We plot for this purpose in figure 10 (as open
circles) their data; they are in reasonable agreement with ours, with an asymptotic
value of m close to ours at large M.

We shall now focus on this limiting case. Tremendous efforts have been made to de-
termine the shape of the finger, in the case of a potential flow (Saffman & Taylor 1958;
Pitts 1980). We deal in this work with a viscous flow between parallel plates; our
data have therefore to be compared with Reinelt & Saffman’s (1985), who analysed
the two-dimensional immiscible Stokes problem in the case M → ∞, and for a finite
capillary number Ca. Using a method of asymptotic matched expansions, they derived
a shape for the finger given by y ∼ λ + A exp(kx), in the region where its reduced
width tends to a constant λ. In the above expression, the reference frame is moving
with the finger, and the tip of the finger is fixed at the origin. This allowed them, using
the interface and boundary conditions on the wall, to derive the relation between Ca,
λ and k, the decay rate as x→ −∞ (equation (20) in their work). We can probe their
finger shape y(x), using the constant A as a fitting parameter. In order to achieve the
fitting procedure, we use our measured value of λ (λ = 0.56), and solve their relation
between Ca, λ and k at high values of Ca (capillary forces negligible). This gives
cos q = q, where q = k(1− λ), that is q = 0.74. The value of k to be used in the fit is
then

kRS =
0.74

1− λ = 1.68. (3.6)

Figure 11 shows the result of the fitting procedure. The shape of the rear of
the finger obtained at M = 100 and Pe = 512 is correctly described by the curve
y = 0.56 + 0.36 exp(1.68 x). Note that our value of λ is comparable with the one they
would obtain at high values of Ca (figures 3 and 4 in their work). We have however
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Figure 12. Fit of the viscous finger obtained at M = 100 and Pe = 512, using expression (3.9). The
solid line is the result of our simulation, the crosses are the Saffman–Taylor formula obtained in a
potential flow, the open circles are our fit with a measured reduced width λ = 0.56 and a decay rate
kRS = 1.68.

to go one step further, in order to derive the analytical expression for the entire
finger. We shall for this purpose, recall Pitts’s approach for fitting the shape of the
Saffman–Taylor finger (Pitts 1980): in the class of closed form solutions developed
from the original Saffman–Taylor approach, Pitts, in order to take capillary effects
into account, tried a one-parameter α fit to his experimental data:

exp
(πx

2α

)
= cos

(πy
2λ

)
. (3.7)

Such a solution, although extrapolated from the potential flow case, provides an
analytical formula for the shape of the finger. In addition, the argument of the
exponential term is the same as Reinelt & Saffman’s one, provided that α is taken
equal to π/2k. We hence attempt a fit to our data, using the expression of Pitts and
the values λ = 0.56, kRS = 1.68. This is achieved in figure 12 (circles). The result of
the fitting procedure is excellent. Note that the asymptotic y(x) of Reinelt & Saffman
can be derived from Pitts’s equation, through an expansion of the cosine term about
π/2 (corresponding to x→ −∞). The asymptote of Reinelt & Saffman then reads

y = λ+
2λ

π
exp(kx). (3.8)

The constant 2λ/π, when evaluated with λ = 0.56, is equal to 0.356, a value very close
to the fitting parameter A used in figure 11 (A = 0.36). We also note that the shape
of the Saffman–Taylor finger in a potential flow is fitted by Pitts’s expression, but
with αST = 1− λ, that is kST = π/2(1− λ) = 1.57/(1− λ). Comparing the prefactors
in the expressions relating k to 1/(1− λ), 0.74 in our case, and 1.57 in the case of the
Saffman–Taylor finger, we can deduce that the shape of the viscous finger in a viscous
flow between two parallel plates is similar to that of the Saffman–Taylor finger in a
potential flow (crosses in figure 12), but stretched with a numerical factor of 2.12 in
the flow direction.
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To summarize, in the no-mixing limit (Pe → ∞), we find an interface which is
a steady-state-shaped finger of reduced width λ∞ = 0.56, when M → ∞. We can
analytically account for its shape, using an extrapolation of Reinelt & Saffman’s
approach for immiscible fluids. Our analysis supports the contention that the two-
dimensional viscous finger (miscible fluids with Pe → ∞, or immiscible fluids with
Ca→∞), is analytically fitted by

exp (kRS x) = cos

(
πy

2λ∞

)
. (3.9)

We have addressed the issue of a flow between two parallel plates in a two-
dimensional geometry: the full three-dimensional flow has yet to be studied and
numerical simulations in a real Hele-Shaw cell are in progress.

4. Conclusion
Using a BGK lattice gas technique, on which we have superimposed a viscosity

mixing rule, we have studied the two-dimensional displacement of miscible viscous
fluids between two parallel plates. A wide range of viscosity ratios and Péclet numbers
have been simultaneously covered. We show that in the case of viscous flows at high
Pe , there exists a smooth threshold in the viscosity ratio M, below which the interface
self-spreads and is displaced with the fluid velocity field, and above which a single
tongue develops. The width of the tongue decreases as M increases, down to an
asymptotic value. In this limit an analytical fit of the tip of the finger has been
obtained, giving a formulation analogous to the Saffman–Taylor fingering pattern for
non-potential flows.

We are indebted to Professors Y. C. Yortsos and M. Rabaud for stimulating dis-
cussions, and C.-Y. Chen and E. Meiburg for communication of their preprint. This
work was partially supported by GDR CNRS Systèmes hétérogènes complexes. Com-
puter time has been provided by the Centre National de Calcul Parallèle en Sciences
de la Terre (CNCPST) and by the Institut du Développement et des Ressources en
Informatique Scientifique (IDRIS).
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